

SEG3101 (Fall 2010)

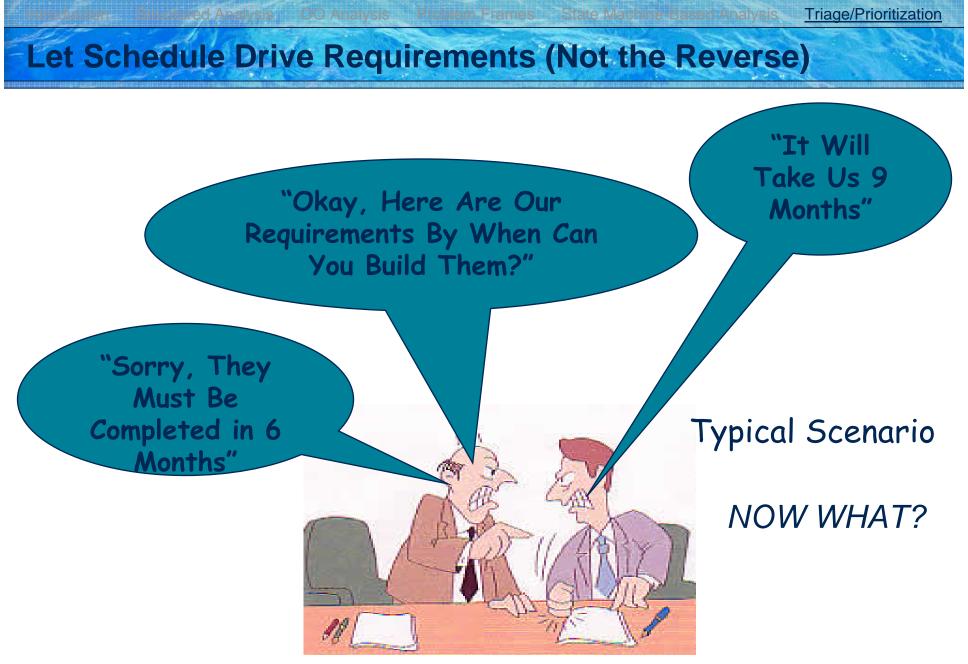
Requirements Triage and Negotiation

Gregor v. Bochmann, University of Ottawa

Based on Powerpoint slides by Gunter Mussbacher with material from:

K.E. Wiegers, D. Leffingwell & D. Widrig, M. Jackson, I.K. Bray, B. Selic, Volere, Telelogic, D. Damian, S. Somé 2008, and D. Amyot 2008-2009

Requirements Negotiation (1)


- Possible conflicts to be resolved among stakeholders
 - Between supplier and customers about costs, benefits, risks
 - Power struggle within customer organization
 - Conflicts with other projects about resources
 - Conflicting goals, features, requirements
 - ..
- Conflict resolution involves negotiation
 - Negotiating a coherent set of requirements is not easy
 - But it is one task of the requirements analyst
 - Difficult to satisfy everyone, to achieve all goals, make good decisions!
 - Involves a lot of (group) discussions

Requirements Negotiation (2)

- First, detect when requirements are inconsistent
- Then, convince all stakeholders to understand the essential point of view of each other
 - Have each party explain what they believe the other party wants and why
- Finally, reach an agreement on a coherent set of requirements that meets the needs of as many stakeholders as possible
 - Analyze each party's goals, find solutions that do not conflict but ideally support everybody's goals

Source: Davis, A.: "Just Enough Requirements Management", Dorset House, 2005; "The art of requirements triage", IEEE Computer, 03/2003

Source: Davis, A.: "Just Enough Requirements Management", Dorset House, 2005; "The art of requirements triage", IEEE Computer, 03/2003 uOttawa SEG3101 (Fall 2010). Requirements Triage and Negotiation

5

Triage/Prioritization

Let Schedule Drive Requirements (Better Scenario)

Source: Davis, A.: "Just Enough Requirements Management", Dorset House, 2005; "The art of requirements triage", IEEE Computer, 03/2003 uOttawa SEG3101 (Fall 2010). Requirements Triage and Negotiation

Requirements Negotiation – Key Aspects (1)

(by analogy with land negotiations)

- Territory: desired requirements
 - The real requirements are those in the head of each stakeholder
- Map: requirements document
 - An abstract model of intentions/requirements, imperfect and incomplete
- Interpretation of the map: included requirements
 - May vary from one session to the next → need to be clear, precise, and unambiguous
- Looking at the map through the magnifying glass: importance
 - Each stakeholder has such a view about its requirements in the project
 - For each stakeholder, see if a documented requirement is important, conflicting, or optional

Requirements Negotiation – Key Aspects (2)

- Negotiating boundaries: counterproposals of stakeholders
 - Reaction of a stakeholder (open, opposed, cooperative...) to a documented requirement may indicate how far it is open for compromise
 - Helps optimize the requirements of all stakeholders
- Can we be consistent? See techniques later on!

Difficulties (1)

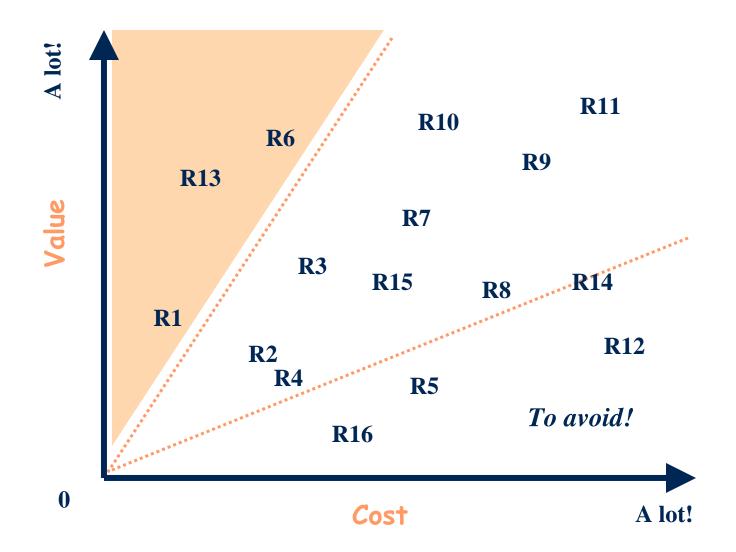
- There are too many requirements!
- From many different sources
- Resources are limited (budget, time...)
- Establishing priorities is important, but
 - Which requirements are important, and to whom?
 - How to prioritize them? On what basis? What to minimize/maximize?
 - In which iteration should the requirement be considered?
- Developers may not know the business value of some requirements, and clients may not know the implementation complexity of some requirements

Difficulties (2)

- Different stakeholders have different goals and different priorities
- Some stakeholders' decisions carry more weight than others
- Companies often lack systematic data, metrics, and technologies to support the prioritization process
 - Often done manually, informally, on an ad-hoc basis
 - Difficult to establish and communicate
- Attitude!
 - "No need for priorities, we can do everything in the specification!"
 - Yes, but when and at what cost?
 - Suddenly, when the deadline is fast approaching, some requirements are put aside in order to deliver something on time...

Requirements Prioritization and Triage

- Requirements prioritization is also referred to as triage
- Need to decide which requirements really matter or on those that need to be implemented in the current release
- Need for compromise, negotiation, priorities
- Prioritization is needed because there will almost always be the need for trade-offs (e.g., required functionality vs. time and resources)
- Must help:
 - Make acceptable tradeoffs among goals of value, cost, time-to-market
 - Allocate resources based on importance of requirements to the project as a whole (project planning)
 - Determine when a requirements should become part of the product
 - Offer the right product!



Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis <u>Triage/Prioritization</u> 80-20 Rule

- 20% of functionalities provide 80% of revenues
 - Think of MS Word...
- The remaining 80% of functionalities offer a lower return on investment while adding delays, development costs, maintenance costs...
- How to find the most useful and beneficial 20% of functionalities?

Which Sector Should We Focus On?

13

Requirements Triage Process

- Must be simple and fast, for industry adoption
- Must yield accurate and trustworthy results
- Must consider issues such as
 - The value of requirements to stakeholder (maximize)
 The cost of implementation (minimize)
 Time to market (to minimize)
- Important to agree on requirements granularity
 - E.g., use cases, features, detailed functional requirements

1st Technique – Prioritization Scales

Determine criteria, granularity, scale dimensions

Frequently used:

- Urgency
 - High (mission critical requirement; required for next release)
 - Medium (supports necessary system operations; required eventually but could wait until a later release if necessary)
 - Low (a functional or quality enhancement; would be nice to have someday if resources permit)
- Importance
 - Essential (product unacceptable unless these requirements are satisfied)
 - Conditional (would enhance the product, but the product is acceptable if absent)
 - Optional (functions that may or may not be worthwhile)

	Important	Not Important				
Urgent	High Priority	Low Priority				
Not Urgent	Medium Priority	Don't do these				

Prioritization Based on Cost and Value

- Calculate return on investment by
 - Assessing the value of each requirement
 - Assessing the cost of each requirement
 - Calculating the cost-value trade-offs

Difficulties:

- Hard to calculate absolute value/cost
- Relative value/cost figures are easier to obtain
- Interdependent requirements difficult to treat individually
- Inconsistencies or conflicts in priorities assigned by individual stakeholders

2nd Technique – Wiegers' Prioritization

- Semi-quantitative analytical approach to requirements prioritization based on value, cost, and risk
- Relies on estimation of relative priorities of requirements
 - Dimensions
 - Relative benefit (for having requirement)
 - Relative penalty to stakeholder (if requirement is not included)
 - Relative cost (to implement requirement)
 - Relative risk (technical and other risks)
 - Each dimension is given a value on a given scale (e.g., 0..9)
 - Dimensions have relative weights
- Formula used to derive overall priority
 - priority = (value%) / ((cost% * cost weight) + (risk% * risk weight))
- Still limited by ability to properly estimate
 - Requires adaptation and calibration

Wiegers' Prioritization Example

Chemical tracking system

Relative Weights:	2	1			1		0.5		
Feature	Relative Benefit	Relative Penalty	Total Value	Value %	Relative Cost	Cost %	Relative Risk	Risk %	Priority
1. Query status of a vendor order	5	3	13	8.4	2	4.8	1	3.0	1.345
2. Generate a Chemical Stockroom inventory report	9	7	25	16.2	5	11.9	3	9.1	0.987
3. See history of a specific chemical container	5	5	15	9.7	3	7.1	2	6.1	0.957
4. Print a chemical safety datasheet	2	1	5	3.2	1	2.4	1	3.0	0.833
5. Maintain a list of hazardous chemicals	4	9	17	11.0	4	9.5	4	12.1	0.708
6. Modify a pending chemical request	4	3	11	7.1	3	7.1	2	6.1	0.702
7. Generate an individual laboratory inventory report	6	2	14	9.1	4	9.5	3	9.1	0.646
8. Search vendor catalogs for a specific chemical	9	8	26	16.9	7	16.7	8	24.2	0.586
9. Check training database for hazardous chemical training record	3	4	10	6.5	4	9.5	2	6.1	0.517
10. Import chemical structures from structure drawing tools	7	4	18	11.7	9	21.4	7	21.2	0.365
Totals	54	46	154	100	42	100	33	100	

Source: Wiegers, Karl E., First Things First: Prioritizing Requirements, http://www.processimpact.com/articles/prioritizing.html

Other Criteria to Consider

- Costs/benefits approach is good but sometimes insufficient
- The following criteria are not all applicable to all projects, but they are there to be considered:
 - Cost of implementation (how much does it cost to develop?)
 - Value to customer (how much does the customer want it?)
 - Time to implement (how much time does it take to deliver?)
 - Ease of implementation at technical level
 - Ease of implementation at the organizational level (business process)
 - Value to company (how much will the business benefit?)
 - Obligation to some external authority (laws, standards, patents...)

3rd Technique – Volere Prioritisation

Volere Prioritisat	ion Sp	oreadshee	t								
Copyright c The Atlantic Sy	stems Gui	ild 2002									
Requirement/Product Use Case/Feature	Number	Factor - score out of 10	%Weight applied	Factor - score out of 10	%Weight applied	Factor - score out of 10	%Weight applied	Factor - score out of 10	%Weight applied		Total Weight
		Value to Customer	40	Value to Business	20	Minimise Implementation Cost	10	Ease of Implementati on	30	Priority Rating	100
Requirement 1	1	2	0.8	7	1.4	3	0.3	8	2.4	4.9	
Requirement 2	2	2	0.8	8	1.6	5	0.5	7	2.1	5	
Requirement 3	3	7	2.8	3	0.6	7	0.7	4	1.2	5.3	
Requirement 4	4	6	2.4	8	1.6	3	0.3	5	1.5	5.8	
Requirement 5	5	5	2	5	1	1	0.1	3	0.9	4	
Requirement 6	6	9	4	6	1.2	6	0.6	5	1.5	6.9	
Requirement 7	7	4	2	3	0.6	6	0.6	7	2.1	4.9	
Requirement											

Editable Excel document

Source: Volere Prioritisation Analysis, http://www.volere.co.uk/prioritisationdownload.htm

🔟 u Ottawa

Pairwise Comparisons (1)

- Finding scores and weights is difficult and subjective
- Potential solution: pairwise comparison
 - Which requirements (A or B) is more important:

A << < = > >> B

Benefits

- Indicates what is important to the client
- Identifies requirements of high value and low cost (priority!)
- Identifies requirements of low value and high cost (likely to be removed)
- Has already been used to assist numerous corporate and government decision makers
 - Choosing a telecommunication system, formulating a drug policy, choosing a product marketing strategy

21

Pairwise Comparisons (2)

- New problems
 - Large number of pairs pairwise comparison can be tedious
 - Solved using transitivity and other tricks!
 - Mathematical optimization of the number of pairs to be considered (no need to cover all)
 - Many dependencies between requirements
 - Can actually be used to further reduce the # of pairs
 - E.g., group many requirements as features, use cases, services...

Example approach

• Analytic Hierarchy Process¹

4th Technique – Analytic Hierarchy Process (AHP)

- Developed by Karlsson and Ryan (1997) based on work by Saaty (early 1970)
 - see also <u>http://en.wikipedia.org/wiki/Analytic_Hierarchy_Process</u>
- Use cost-value diagrams to analyze and discuss candidate requirements
- Useful for requirements triage and release planning (but also applicable in many other situations where complex decisions are to be made)
- Basic procedure for rating a set of criteria
 - Develop pairwise comparison matrix of each criterion
 - Normalize the matrix
 - Average the value of each row to get corresponding rating
- Criterion ratings are then used to evaluate different potential decisions Ottawa

Basic Rating Pr	
 Pairwise compar 	rison rating scale
RATING	DESCRIPTION
1	Equally preferred

Moderately preferred

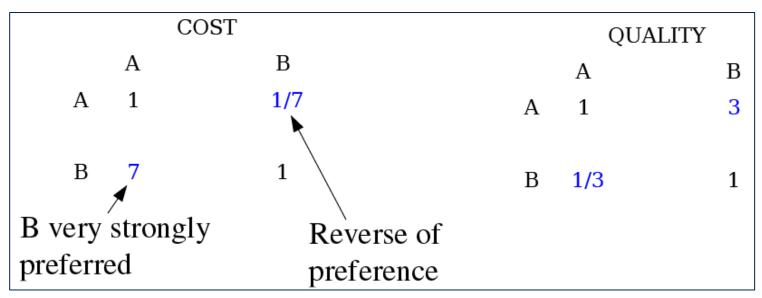
Very strongly preferred

Extremely strongly preferred

Strongly preferred

 Values 2, 4, 6, or 8 represent preferences halfway between the integers on either side

3


5

7

9

Basic Rating Procedure (2)

- Suppose two criteria, cost and quality, for product A & B
 - The cost for A is \$60 and the quality is above average.
 - The cost for B is \$15 and the quality is right at average.
- Which product do you choose?

 The matrix describes that the price of B is very strongly preferred over A and A is only moderately preferred over B

Basic Rating Procedure (3)

 Suppose three products with the following pairwise comparison (for one given criteria)

	А	В	С
A	1	3	2
В	1/3	1	1/5
С	1/2	5	1

Basic Rating Procedure (4)

 Normalize the matrix First add up all the values in each 	X		A	A 1 +	_	B 3 +	C 2 +
column			В	1/3	3	1	1/5
				+		+	+
			С	<u>1/2</u>	2	5	<u> 1 </u>
			=	11/	6	9	16/5
 Next the values in 			Α			В	С
each column are divided by the	Α	1/(11/6) =	6/1	1	<u>3</u> /9 =	= 3/9	$\frac{2}{16/5} = \frac{5}{8}$
corresponding			+			+	+
column sums	В	(1/3)/ <u>(</u> 11/6)	= 2	/11	1/9 =	= 1/9	(1/5)/(16/5) = 1/16
 Note: the values 			+			+	+
in each column	С	(1/2)/ <u>(</u> 11/6)	= <u>3/</u>	'11	5/9 =	= <u>5/9</u>	(11/6)/5 = 5/16
add up to 1			=	1		1	1

Basic Rating Procedure (5)

Average the value of each row to get corresponding rating

В С А Row Average А 6/11 ~.5455 + 3/9~.3333 + $5/8 \sim .6250 = 1.5038 / 3 = .5012$ $1/16 \sim .0625 = .3544 / 3 = .1185$ 2/11~.1818 + 1/9~.1111 В + С 3/11~.2727 + 5/9~.5556 + 5/16~.3803 = 1.2086 / 3 = .3803 1.000

A has highest rank

Analytic Hierarchy Process – Steps

- Requirements engineers check individual requirements for ambiguities, completeness...
- Apply AHP's pairwise comparison to estimate the relative value of candidate requirements
- Experienced software engineers use AHP's pairwise comparison to estimate the cost of candidate requirements
- Plot these values on a cost-value diagram
- Stakeholders use this diagram for analysis and to make trade-offs

10

12%

15%

9

11%

13%

Analytic Hierarchy Process – Example (1)

3

2%

1%

4

3%

5%

5

27%

20%

6

9%

13%

7

1%

2%

8

17%

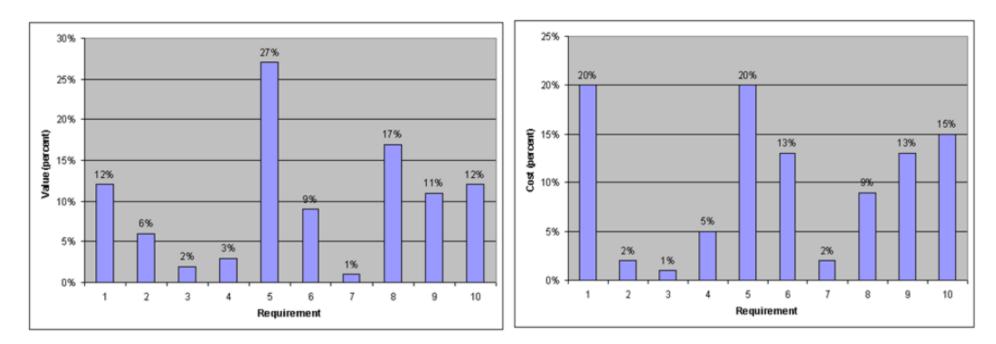
9%

2

6%

2%

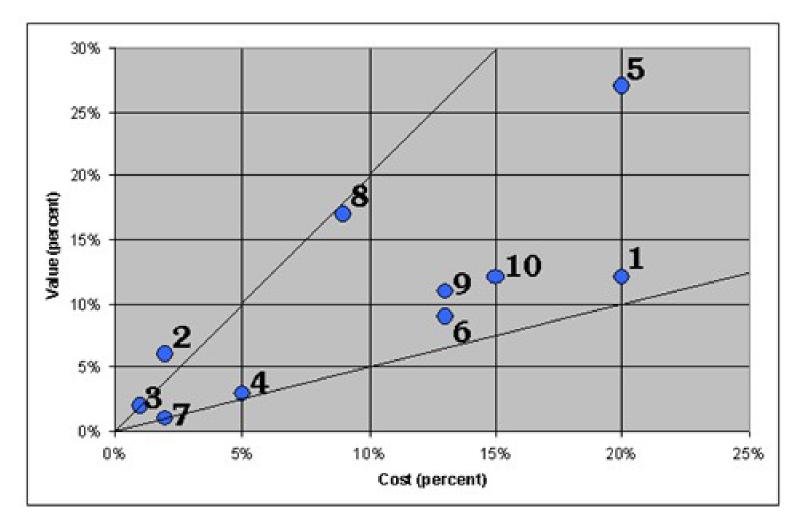
Value/Cost obtained by AHP


Req

Value

Cost

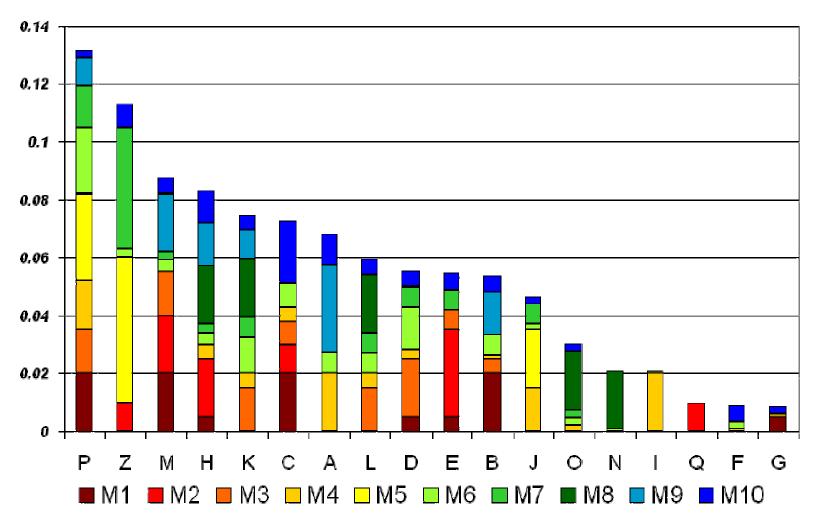
12%


20%

Analytic Hierarchy Process – Example (2)

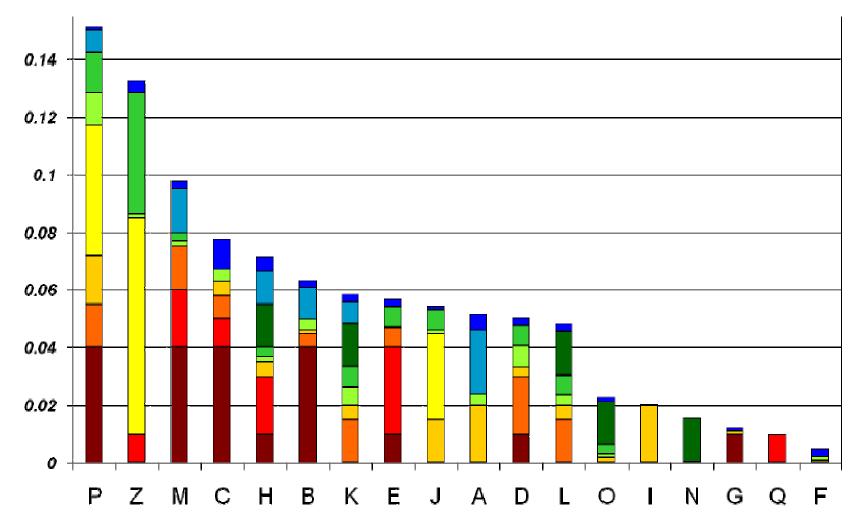
Cost-value diagram

31


Analytic Hierarchy Process – Stakeholders (1)

- Each client is unique!
- Each stakeholder group may have a different weight
 - Process uses a weighting criteria to consider each individual stakeholder group
- Example (stakeholders M1 to M10 are different markets)
 - Revenue last release
 - Profit last release
 - Number of sold licenses last release
 - Predictions of the above criteria for the coming release
 - Number of contracts lost to competitors
 - Number of potential customer with nil licenses to date
 - Size of total market segment
 - Growth potential

Analytic Hierarchy Process – Stakeholders (2)


Before adjustment based on stakeholders importance

Source: Damian, 2005

Analytic Hierarchy Process – Stakeholders (3)

After adjustment based on stakeholders importance

Example of Commercial Tool

- IBM Rational (formerly Telelogic) Focal Point
 - Decision support, portfolio management
 - Pairwise comparisons of features
 - Creation and validation of web questionnaires
 - Dynamic algorithm for reducing the number of pairs, according to the responses
 - Detection of inconsistency between the answers
 - Priorities
 - For different markets
 - Represented in various different ways
 - Integration with DOORS
 - http://www-01.ibm.com/software/awdtools/focalpoint/

